

I.S. 4000 8000

MANUALE DI SERVIZIO

SERVICE MANUAL

INDICE

1 CARATTERISTICHE TECNICHE

1.1 Motore

Alternatore
Dimensioni
1.2 Identificazione del generatore Numero di matricola del generatore Numero di matricola del motore
1.3 Identificazione dei componenti

2 PRINCIPIO DI FUNZIONAMENTO
3 MANUTENZIONE
3.1 Generalità
3.2 Manutenzione periodica

4 CONTROLLI
4.1 Controlli sulla scatola di derivazione
4.1.1 Avvolgimento di eccitazione
4.1.2 Avvolgimento di potenza
4.1.3 Avvolgimento di carica batteria
4.1.3.1 Fusibile
4.1.4 Interruttore termico
4.1.5 Scheda comandi
4.1.5.1 Fusibile
4.1.5.2 Relay
4.1.5.3 Diodi
4.2 Rotore
4.2.1 Diodi di rotore
4.2.2 Avvolgimenti di rotore
4.3 Smontaggio/Montaggio alternatore
4.4 Cruscotto comandi
4.4.1 Condensatori
4.4.2 Circuito stampato
4.4.3 Comando a distanza
4.5 Altri particolari
4.5.1. Scambiatore di calore (acqua/aria)
4.5.1.1 Fascio tubiero
4.5.1.2 Anodi di zinco
4.5.2 Elettrovalvola-Stop
4.5.3 Regolazione dei giri
4.5.4 Termostato acqua
4.5.5 Pressostato olio
4.5.6 Motorino awviamento

5 TABELLA GUASTI
6 SCHEMA ELETTRICO ALTERNATORE
7 VERIFICA DELL'INSTALLAZIONE

INDEX

1 TECHNICAL FEATURES

1.1 Engine

Alternator
Dimensions
1.2 Identification of generator

Generator serial number
Engine serial number
1.3 Identification of components

2 PRINCIPLE OF POWER GENERATION
3 MAINTENANCE
3.1 Notes on service
3.2 Periodic service guide

4 SERVICE
4.1 Checks on the branch box
4.1.1 Excitation winding
4.1.2 Power winding
4.1.3 Battery charger winding
4.1.3.1 Fuse
4.1.4 Alternator thermostat
4.1.5 Control board
4.1.5.1 Fuse
4.1.5.2 Relay
4.1.5.3 Diodes
4.2 Rotor
4.2.1 Rotor diodes
4.2.2 Rotor windings
4.3 Alternator dismounting/mounting
4.4 Control panel
4.4.1 Capacitors
4.4.2 Printed circuit
4.4.3 Remote control panel
4.5 Other components
4.5.1 Heat exchanger (water/air)
4.5.1. 1 Tube nest
4.5.1.2 Zinc anodes
4.5.2 Fuel solenoid
4.5.3 Engine speed adjustment
4.5.4 Water temperature switch
4.5.5 Oil pressure switch
4.5.6 Starter

5 TROUBLE SHOOTING
6 WIRING DIAGRAMS
7 INSTALLATION

CARATTERISTICHE TECNICHE - TECHNICAL FEATURES

1.1) Motore - Engine

	IS 4000	IS 4500	IS 8000	IS 8000
Motore diesel - 4 tempi - iniezione indiretta con precamera raffreddamento ad acqua Engine diesel - 4 stroke - indirect injection - water cooled	LDW 401 MG		LDW 602 MG	
Cilindri - Cylinder	1		2	
Alesaggio - Bore mm .	86		72	
Corsa - Stroke mm.	68		75	
Cilindrata - Displacement c.c	395		611	
Potenza - Power NA (Din. 6270) HP	7.2	7.5	12	12.6
Potenza - Power NB (Din. 6270) MP	8.0	8.5	13.2	14.1
Giri - R.P.M.	3000	3600	3000	3600
Rapporto di compressione - Compression ratio	22.3:1		22.8:1	
Capacitả carter olio - Oil sump capacity L.	1.2		1.54	
Capacità scambiatore di calore - Heat exchanger capacity L.	-		2	
Consumo a pieno carico - Consumption at full load L/h.	2	2.3	3.2	3.5
Batteria avviamento - Starting battery Ah/Volt.	45/12		55/12	
Volume aria combustione - Combustion air $\mathrm{m}^{3 / \mathrm{h}}$	29	35	56	67
Max. contropressione allo scarico - Max. exhaust back pressure mm. $\mathrm{H}_{2} \mathrm{O}$	2.000		2.000	
Max. inclinazione - Max. angle of incline	25°		20°	

Alternatore - Alternator

Alternatore Sincrono - monofase - 2 poli - autoeccitato - autoregolato - senza spazzole - raffreddato ad aria Alternator: Syncronus - single-phase - 2 pole - self excited - self regulated . brushless - air cooled	MASE			
Tensione - Voltage Volt.	220/110	240/120	220/110	$240 / 120$
Frequenza - Frequency ${ }^{\text {HZ }}$	50	60	50	60
Corrente nominale - Rated output Amp.	18.2/36.4	17.9/35.8	31.8/63.6	31.2/62.5
Potenza continua - Continuous output Watt.	4000	4300	7000	7500
Uscita corrente continua - D.C. output Amp./Volt.	15-12			
Fattore di potenza - Power factor	1			
Stabilita di tensione (vuoto/pieno carico) - Voltage stability (no load/load)	$\pm 5 \%$			
Stabilità di frequenza (vuoto/pieno carico) - Frequency stability (no load/load)	$\pm 3 \%$			
Classe di isolamento - Insulation class	F			

Dimensioni - Dimensions

Lunghezza - Lenght	MM.	675	780
Profondita - Depth	MM.	465	570
Altezza - Width	MM.	550	615
Peso - Weight	kg.	102	155

1.2 Identificazione del generatore

IS 4000

IS 4000

IS 8000

1.2 Identification of generator

IS 8000

Il numero di matricola del generatore è riportato su di una targhetta metallica rivettata sulla parte inferiore della cassa (Fig. 1/1a).
Qualora non sia possibile identificare il generatore da questo numero, si faccia riferimento al numero di matricola del motore, punzonato sulla targhetta (Fig. 2/2a).

Each generator has an identification number itched on a small metallic plate and rivetted to the lower front side of the sound shield (Fig. 1). In case, identifying by this number becomes impossible, please note the engine number, die stamped on the label (Fig. 2/2a).
1.3 Identificazione dei componenti

IS 4000

1.3 Identification of components

IS 4000

Elementi della macchina (Fig. 3-4)

1) MOTORE
2) ALTERNATORE
3) SCATOLA DI DERIVAZIONE
4) FILTRO GASOLIO
5) INTERRUTTORE ALTA TEMPERATURA ACQUA
6) FILTRO ARIA
7) TERMOSTATO
8) RUBINETTO SCARICO ACQUA
9) ELETTROVALVOLE DI ARRESTO
10) POMPA COMBUSTIBILE
11) POMPA ESTRAZIONE OLIO CARTER
12) POMPA ACQUA
13) PRESSOSTATO OLIO
14) PASTIGLIE DI ZINCO
15) INGRESSO COMBUSTIBILE
16) RITORNO COMBUSTIBILE
17) INGRESSO ACQUA
18) MORSETTI BATTERIA
19) SCAMBIATORE ACQUA/ARIA
20) PRESA ARIA
21) PASSACAVI
22) RACCORDO SCARICO
23) REGOLATORE CARICA BATTERIA
24) LEVA ARRESTO MANUALE

Generator components (Fig. 3-4)

1) ENGINE
2) ALTERNATOR
3) BRANCH BOX
4) FUEL FILTER
5) HIGH WATER TEMPERATURE SWITCH
6) AIR FILTER
7) THERMOSTAT
8) WATER DISCHARGE TAP
9) FUEL SOLENOID
10) FUEL PUMP
11) CRANKCASE OIL EXTRACTION PUMP
12) WATER PUMP
13) OIL PRESSURE SWITCH
14) ZINC ANODES
15) FUEL FEED
16) FUEL RETURN
17) WATER FEED
18) BATTERY CONNECTIONS
19) WATER/AIR HEAT EXCHANGER
20) AIR INLET
21) CABLES GUIDE
22) EXHAUST FITTING
23) BATTERY CHARGER REGULATOR
24) MANUAL STOP LEVER

Elementi della macchina (Fig. 5-6)

1) MOTORE
2) ALTERNATORE
3) SCATOLA DI DERIVAZIONE
4) FILTRO GASOLIO
5) TERMOSTATO ACQUA
6) FILTRO ARIA
7) VALVOLA TERMOSTATICA
8) SCAMBIATORE DI CALORE
9) RUBINETTO SCARICO LIQUIDO REFRIGERANTE
10) ELETTROVALVOLA DI ARRESTO
11) LEVA ARRESTO MANUALE
12) POMPA COMBUSTIBILE
13) POMPA ESTRAZIONE OLIO CARTER
14) POMPA ACQUA
15) PRESSOSTATO OLIO
16) PASTIGLIE DI ZINCO
17) INGRESSO COMBUSTIBILE
18) RITORNO COMBUSTIBILE
19) INGRESSO ACQUA
20) COLLEGAMENTI BATTERIA
21) PRESA ARIA
22) PASSACAVI
23) SCAMBIATORE ACQUA/ARIA
24) REGOLATORE CARICA BATTERIA
25) RACCORDO SCARICO

Generator components (Fig. 5-6)
26) ENGINE
27) ALTERNATOR
28) BRANCH BOX
29) FUEL FILTER
30) WATER TEMPERATURE SWITCH
31) AIR FILTER
32) THERMOSTAT
33) HEAT EXCHANGER
34) COOLANT DISCHARGE TAP
35) FUEL SOLENOID
36) STOP LEVER
37) FUEL PUMP
38) CRANKCASE OIL EXTRACTION PUMP
39) WATER PUMP
40) OIL PRESSURE SWITCH
41) ZINC ANODES
42) FUEL FEED
43) FUEL RETURN
44) WATER FEED
45) BATTERY CONNECTIONS
46) AIR INLET
47) CABLES GUIDE
48) WATER/AIR HEAT EXCHANGER
49) BATTERY CHARGER REGULATOR
50) EXHAUST FITTING

IS 4000

Scatola di derivazione (Fig. 7-8)

1) MORSETTIERA COMANDI
2) MORSETTIERA POTENZA
3) MORSETTIERA CONDENSATORI/ CONTAORE
4) SCHEDA COMANDI
5) FUSIBILE CARICA BATTERIA

IS 8000

Branch box (Fig. 7-8)

1) CONTROL TERMINAL BOARD
2) POWER TERMINAL BOARD
3) CAPACITORS/HOURMETER TERMINAL

BOARD
4) CONTROL PRINTED CIRCUIT
5) BATTERY CHARGER FUSE

Control panel (Fig. 9-9a)

1) CONTAORE
2) CONNETTORE ALLACCIAMENTO COMANDO DISTANZA
3) PULSANTE «ON»
4) PULSANTE «START»
5) PULSANTE «OFF»,
6) SPIA PRESSIONE OLIO
7) SPIA TEMPERATURA ACQUA
8) SPIA SOVRACCARICOI

SOVRATEMPERATURA
9) SPIA ALIMENTAZIONE CRUSCOTTO
10) SPIA CANDELETTE
11) SPIA GENERATORE
12) CIRCUITO STAMPATO
13) CONDENSATORI

Comando a distanza (Fig. 10)

1) HOURMETER
2) REMOTE CONTROL PANEL CONNECTOR
3) «ON» BUTTON
4) «START» BUTTON
5) «OFF» BUTTON
6) OIL PRESSURE LAMP
7) WATER TEMPERATURE LAMP
8) OVERLOAD/OVERTEMPERATURE LAMP
9) CONTROL PANEL LAMP
10) GLOW PLUG LAMP
11) GENERATOR LAMP
12) PRINTED CIRCUIT
13) CAPACITORS

Remote control panel (Fig. 10)

1) PULSANTE «ON»
2) PULSANTE «START»
3) PULSANTE «OFF»
4) SPIA ALLARME GENERALE
5) SPIA ALIMENTAZIONE COMANDO
6) SPIA CANDELETTE
7) SPIA FUNZIONAMENTO GENERATORE
8) «ON» BUTTON
9) "START" BUTTON
10) «OFF» BUTTON
11) GENERAL WARNING LAMP
12) REMOTE CONTROL PANEL LAMP
13) GENERATOR LAMP

IMPORTANTE

L'allacciamento del cruscotto comandi a distanza esclude automaticamente i comandi avviamento e arresto dal cruscotto comandi

WARNING

When the remote control panel is connected automatically the start and stop functions on the main control panel are cutted out.

2) PRINCIPIO DI FUNZIONAMENTO

I generatori della serie I.S. sono dotati di alternatori senza spazzole, sincroni, a due poli, autoregolati ed autoeccitati con condensatore (Fig. 11 Rif. 5) collegato con l'avvolgimento ausiliario di statore (Fig. 11 Rif. 3). Gli alternatori generano una tensione alternata, disponibile ai morsetti dell'avvolgimento principale (Fig. 11 Rif. 4) a una frequenza di 50 Hz . o 60 Hz . (corrispondenti ad una velocità del motore primo rispettivamente di 3000 o 3600 giri $/ \mathrm{min}$.) secondo il principio di seguito descritto.
All'avviamento il magnetismo di rotore (magnetismo residuo del nucleo) induce nell'avvolgimento ausiliario di eccitazione (Fig. 11 Rif. 3) una tensione.
Questa tensione è applicata al condensatore (Fig. 11 Rif. 5) e fa circolare nel circuito chiuso, costituito dal condensatore e dall'avvolgimento ausiliario, una corrente capacitiva.
Questa corrente produce un campo magnetico che rafforza il magnetismo di rotore, generando in esso una tensione che, raddrizzata dal diodo, (Fig. 11 Rif. 2) fa circolare una corrente continua nell'avvolgimento induttore (Fig. 11 Rif. 1). Il campo magnetico rotante dovuto alla circolazione di questa corrente genera a sua volta nell'avvolgimento principale (Fig. 11 Rif. 4) la tensione nominale ai morsetti del generatore. I valori (intesi come percentuale dei valori nominali) di tensione e corrente disponibili ai morsetti hanno l'andamento riportato nel diagramma (Fig. 12). Come si può notare, è possibile prelevare corrente fino al valore nominale a tensione praticamente costante $\pm 5 \%$) ed inoltre l'alternatore, ad una tensione non inferiore al 70-75\% del valore nominale, è ancora in grado di fornire una corrente di picco pari a circa 3 volte il valore nominale.
Questa caratteristica, tipica di questo alternatore, è particolarmente utile nella fase di avviamento dei motori elettrici asincroni.

IS brand generators are equipped with two pole, sinchronous brushless alternators. These alternators are also self-regulating and self-exciting with capacitor (Fig. 11 Ref. 5) connected to the auxilliary winding of the stator (Fig. 11 Ref. 3). The alternators generate an alternating voltage at the terminals of the main winding (Fig. 11 Ref. 4) having a frequency of 50 or 60 Hz . (depending on whether the engine runs at 3000 or 3600 R.P.M.).

The generation of current is in accordance with the principle described herebelow:
On starting the unit, the magnetic force of the rotor (residual magnetism of the nucleus) induces a voltage in the auxilliary winding of excitation (Fig. 11 Ref. 3). This voltage is fed to the capacitor (Fig. 11 Ref. 5) which creates a capacitive current circulating in the closed circuit constituted of the capacitor and the auxilliary winding.
This capacitive current, creates a magnetic field, reinforcing the magnetism of rotor, thus creating in it a voltage which rectified by a diode (Fig. 11 Ref. 2) makes a D.C. current circulate in the induction winding (Fig. 11 Ref. 1). As a result of which a rotating magnetic field is created which generates the rated output in the principal winding (Fig. 11 Ref. 4) and which can be tapped at the terminals.
The voltage and current values (denoted in percentage terms of rated values are as shown in the diagram (Fig. 12).
As you will note, it is possible to get energy up to the nominal value. With voltage practically constant ($\pm 5 \%$). Moreover, the alternator at a voltage not inferior to $70-75 \%$ of the rated voltage, is able to furnish, as initial power rush, up to 3 times the rated amperage.
As we know, this initial rush, typical of this alternator is extremely important to start asynchronous motors.

3) MANUTENZIONE

3.1) Generalità

Per la durata ed il corretto funzionamento del generatore è necessario rispettare il programma di controlli e manutenzione indicati nella tabella seguente.
L'esecuzione di queste operazioni è descritta, per la parte relativa al motore, sul libretto uso e manutenzione o sul manuale d'officina del costruttore del motore.
Si ricorda inoltre che durante le normali operazioni di manutenzione (montaggio/smontaggio) è necessario rispettare alcune regole generali quindi:

- rispettare le coppie di serraggio indicate
- utilizzare grassi, olii, frenafiletti appropriati
- non lavare avvolgimenti o parti elettriche con acidi o sostanze corrosive
- spruzzare disossidanti sui contatti elettrici - rispettare la numerazione dei cavi Se necessario annotarne la numerazione e la posizione.

3) MAINTENANCE

3.1) Notes on service

For the longevity and correct performance of the generator, it is necessary to respect the check and maintenance program detailed out in the following tables.
As regards the engine, the maintenance operations are described in the use and maintenance manual and the workshop manual prepared by the engine manufacturer.
Please note further that while involved in normal maintenance work of the generator (dismounting/mounting) certain general rules must be adhered to:

- respect the torque specifications
- use appropriate oil, grease and bonding agents
- do not clean windings or electrical parts with acid or other corroding substances
- spray deoxidizer on the electrical contact points
- respect the numerical order of wires If necessary, note their numeration and position.

3.2) Periodic service guide

I.S. 8000

- PRIMA SOSTITUZIONE - FIRST REPLACEMENT

3.2) Tabella di manutenzione

I.S. 4000

MANUTENZIONE MAINTENANCE		PERIODICITÀ ORE HOURS							
		8	50	100	200	300	500	1500	3000
	INIETTORI - INJECTOAS								
	FILTRO OLIO INTERNO - INTERNAL OIL FILTER FILTER					\bigcirc			
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	LIVELLO OLIO MOTORE - KRANKCASE OH LEVEL	-							
	LIVELLO LIQUIDO BATTERIA - BATTERY WATER LEVEL		-						
	BOCCOLA ROTORE - ROTOR BUSHING								
	VALVOLA TERMOSTATICA - TEPMOSTAT								
	ANODI DI ZINCO-ZINC ANODES								
	TENSIONE CINGMIA - $\overline{\text { GEL }}$ T TENSKON								
	GIOCO VALVOLE - ROCKER AARMS clearance					\bigcirc			
	SERRAGGIO RACCORDO MANDATA CONB. - THGHTEN FUEL DELINERY UNION					0			
	OLIO CARTEA - CRANKCASE OIL		*						
	FILTRO OLIO - Oh Filter		*						
	FILTRO COMBUSTIBILE - FUEL FILTER								
	CINGHIA - BELT								
	PARZIALE - PAATIAL								
	GENERALE - TOTAL								

[^0]
4) CONTROLLI

Tutte le misure di resistenza si intendono eseguite ad alternatore freddo, temperatura ambiente $10 \div 30^{\circ} \mathrm{C}$ e con strumentazione tale da permettere la lettura dei valori indicati.
La tolleranza rispetto ai valori riportati è indicativamente $\pm 10 \%$.
Letture più approssimative, eseguite con strumenti di portata non adeguata, possono unicamente indicare la continuità dell'avvolgimento ma non danno indicazioni su eventuali corto circuiti.

> N.B.
> Oltre alle possibilità di guasto che sono indicate in seguito, si può presentare il caso di uno o più avvolgimenti a massa. Si consiglia quindi di controllare questa eventualità verificando con un tester che non ci sia continutà fra le estremità dei vari avvolgimenti (identificati nei paragrafi successivi) e massa.
4.1) Controlli che possono essere eseguiti senza smontare l'alternatore, direttamente sulla scatola di derivazione

Operazioni preliminari

- Togliere le viti (Fig. 13 Rif. 1)
- Rimuovere il coperchio della scatola (Fig. 13 Rif. 2).

4) SERVICE

All the resistances must be measured when the alternator is cold, ambient temperature between $10-30^{\circ} \mathrm{C}$ and with an instrument board that permits reading of the given values.
The tolerance against the reported values is around $\pm 10 \%$.
Readings taken with simpler instruments can only indicate the continuity of the winding but cannot indicate presence of shorted circuits.

N.B.

Apart from the possibilities suggested here-by, one or more windings could also be grounded causing a failure.
We suggest therefore to check by means of a tester that there is no continuity between the extremities of the windings and ground.
4.1) Inspections possible without having to dismount the alternator, directly on the branch box

Preliminary operations

— Remove the screws (Fig. 13 Ref. 1)
—Remove the cover of the box (Fig. 13 Ref. 2).

IS 4000

IS 8000

4.1.1) Avvolgimento di eccitazione

Caratteristiche:

IS 4000	50 HZ.	2.00Ω
	60 HZ.	1.50Ω
IS 8000	50 HZ.	0.80Ω
	60 HZ.	0.50Ω

4.1.1) Excitation winding

Characteristics:

IS 4000	50 HZ.	2.00Ω
	60 HZ.	1.50Ω
IS 8000	50 HZ.	0.80Ω
	60 HZ.	0.50Ω

Metodo di controllo:

- Scollegare dalla morsettiera (morsetti 19 e 20) i due cavi (BLU) provenienti dallo statore (Fig. 14). - Verificare che la resistenza fra le estremità di questi due cavi rientri nei valori indicati in tabella.

RIMEDIO: Sostituire lo statore.

4.1.2) Avvolgimento di potenza

Caratteristiche:

IS 4000	50 HZ.	0.35Ω
	60 HZ.	0.25Ω
IS 8000	50 HZ.	0.15Ω
	60 HZ.	0.12Ω

Metodo di controllo:

- Scollegare dalla morsettiera i cavi di potenza provenienti dallo statore contrassegnati dalle lettere $P_{1} F_{1} P_{2} F_{2}$ (Fig. 15).
- Verificare che la resistenza fra le estremità di entrambi le coppie di cavi $P_{1} F_{1}$ e $P_{2} F_{2}$ rientri nei valori indicati in tabella.
N.B. La resistenza totale dell'avvolgimento (nel collegamento 220 V o 240 V) si misura ponticellando F_{1} e P_{2}. La misura effettuata fra i punti P_{1} F_{2} sarà il doppio del valore indicato in tabella.

RIMEDIO: Sostituire lo statore.

4.1.3) Avvolgimento di carica batteria (Statore)

Caratteristiche:

4000	50 HZ.	0.06Ω	13 V
	60 HZ.	0.06Ω	
8000	50 HZ.	0.06Ω	13 V
	60 HZ.	0.06Ω	

Testing method:

- Disconnect from the terminal board, the wires coming from stator marked by the letters $P_{1} F_{1}$ $P_{2} F_{2}$ (Fig. 15).
- Verify that the resistance values between the two pairs of wire terminals $P_{1} F_{1}$ and $P_{2} F_{2}$ are within the limits as reported in the table above.
N.B. The total resistance value of power winding (220/240V) is measured connecting F_{1} an P_{2}. The resistance value measured between P_{1} and F_{2} is double of that indicated in the table above.

REMEDY: Replace the stator.

4.1.3) Battery charger winding

 (Stator)
Characteristics:

4000	50 HZ.	0.06Ω	13 V
	60 HZ.	0.06Ω	
8000	50 HZ.	0.06Ω	13 V
	60 HZ.	0.06Ω	

IS 4000

Metodo di controllo:

- Scollegare il connettore ed il cavo ROSSO che va al fusibile (Fig. 16)
- Verificare che la resistenza fra il cavo ROSSO e rispettivamente i due cavi VERDI (terminali G) rientri nei valori indicati.
IN ALTERNATIVA
- Verificare che fra il cavo ROSSO e rispettivamente i cavi VERDI la tensione alternata rientri nei valori indicati in tabella.
N.B.: Eseguire questa misura senza carichi applicati al generatore con batteria d'avviamento inserita e dopo aver atteso per qualche minuto dall'avviamento.

RIMEDIO: Sostituire lo statore.

IMPORTANTE

Il circuito del carica batteria è dotato di un regolatore elettronico di carica in grado di erogare max. 15 A a 12 V in caso di anomalia nella ricarica della batteria dopo aver controllato la resistenza dell'avvolgimento ed il fusibile si consiglia di sostituire il regolatore.

4.1.3.1) Fusibile carica batteria

Caratteristiche:

$4000 / 8000$	50 HZ.	30 A
	60 HZ.	30 A

Testing method:

- Disconnect the connector and the wire (color: RED) going to the fuse (Fig. 16).
- Verify that the resistance values between the RED wire and the GREEN wires (terminals G) are within the limits indicated in the table above.
AS AN ALTERNATIVE
- Verify that the voltage between the RED wire and the GREEN wire is as reported above.
N.B.: The above measurements must be done after few minutes from the starting without any load applied to the generator and with the starting battery connected.

REMEDY: Replace the stator.

WARNING

The battery charger circuit, equipped with an electronic charger regulator, has a max. output of 15 A at 12 V . If the defect on the battery charger circuit results not to depend on the fuse or on the stator windings, it's advisable to replace the regulator.

4.1.3.1) Battery charger fuse

Characteristics:

$4000 / 8000$	50 HZ.	30 A
	60 HZ.	30 A

Metodo di controllo

- Verificare la continuità alle estremità del fusibile (Fig. 17)

RIMEDIO: Sostituire il fusibile

Testing method:

- Verify the continuity at its terminals (Fig. 17)

REMEDY: Replace the fuse.

4.1.4) Interruttore termico (Statore)

Caratteristiche:

Normalmente chiuso. Temperatura d'intervento $160^{\circ} \mathrm{C}$.

Metodo di controllo:

- Scollegare dalla morsettiera i due cavi (NE-

RI) provenienti dallo statore ai morsetti N. 10 e N. 13 (Fig. 18).

- Verificare la continuità fra le due estremità dei cavi.

RIMEDIO: Sostituire lo statore.

N.B.: L'interruttore termico può intervenire per sovraccarico o per sovratemperatura.
Verificare quindi, se è necessario, i carichi applicati e la tempertura d'esercizio del generatore, con particolare attenzione alla sua installazione.

4.1.4) Thermal switch (Stator)

Characteristics:

Normally closed. Trips at a temperature of $160^{\circ} \mathrm{C}$.

Testing method:

- Disconnect from the terminal board, the two wires (color: BLACK) connecting terminals No. 10 and No. 13 (Fig. 18) to the stator.
- Check that there is continuity between the two ends of the two wires.

REMEDY: Replace the stator.
N.B.: The thermal switch can trip because of overload or overheat. It's hence important to verify the loads connected and the running temperature of the generator with an eye on installation to verify if it may have contributed to the problem.

IS 4000

IS 8000

1) FUSE
2) FUEL SOLENOID RELAY
3) STARTING RELAY
4) GLOW PLUG «1» RELAY
5) GLOW PLUG «2» RELAY (ONLY IS 8000)
6) DIODES

4.1.5.1) Fuse

Characteristics:

$4000 / 8000$	50 HZ. $60 \mathrm{HZ}$.	1 A

Metodo di controllo:

- Verificare la continuità alle estremità del fusibile (Fig. 20).

RIMEDIO: Sostituire il fusibile.

Testing method:

- Verify the continuity at its terminals (Fig. 20).

REMEDY: Replace the fuse.

4.2) Rotore

Operazioni preliminari

- Rimuovere il coperchietto (Fig. 23 Rif. 1) dopo aver tolto le viti (Fig. 23 Rif. 2) per IS 4000. - Togliere i dadi (Fig. 24 Rif. 1) e le viti (Fig. 24 Rif. 2), rimuovere il coperchio (Fig. 24 Rif. 3) per IS 8000 .

4.2) Rotor

Preliminary operations

- Remove the screws (Fig. 23 Ref. 2) and the cover (Fig. 23 Ref. 1) IS 4000.
- Remove the nuts (Fig. 24 Ref. 1) the screws (Fig. 24 Ref. 2) and the cover (Fig. 14 Ref. 3) is 8000

IS 8000

4.2.1) Rotor diode (n° 2)

Characteristics: 25A 800V

Metodo di controllo:

- Scollegare il cavo dal diodo.
- Verificare che la resistenza fra (+) e massa rientri nei valori indicati (Fig. 25).
- Verificare che invertendo i puntali del tester non ci sia più continuità.

RIMEDIO: Sostituire il diodo.
N.B.: In caso di diodo difettoso è necessario sostituire anche il varistore (Fig. 25 Rif. 1) anche se apparentemente integro.

Testing method:

- Disconnect the wire from diode.
- Verify that the resistance value between (+) and ground is as reported above (Fig. 25).
- Invert the tester terminals and verify that there is no continuity in the reverse direction.

REMEDY: Replace the diode.
N.B.: If the diode is defective it's necessary to replace the varistor too, (Fig. 25 Ref. 1), even if it appears intact.

4.2.2) Avvolgimento di rotore ($\mathrm{n}^{\circ} 2$)

Caratteristiche:

IS 4000	50 HZ. 60 HZ.	0.60Ω
IS 8000	50 HZ. 60 HZ.	0.90Ω

4.2.2) Rotor winding (no. 2)

Characteristics:

IS 4000	50 HZ. 60 HZ.	0.60Ω
IS 8000	50 HZ. 60 HZ.	0.90Ω

Metodo di controllo:

- Scollegare le estremità dell'avvolgimento di rotore.
- Verificare che la resistenza fra le due estremità rientri nei valori indicati (Fig. 26).

RIMEDIO: Sostituire il rotore.

[^1]
Testing Method:

- Disconnect the wires of the rotor winding. - Verify that the resistance value between the wire terminals is as reported in the table above (Fig. 26).

REMEDY: Replace the rotor.

WARNING

If there is still no power it could depend very rarely on the dissipation of the residual magnetism of the rotor.
So as to solve the problem it is advisable to connect a 12 V battery to the capacitor terminals or to the power terminals, for a few instants, while the generator is running. The rotor will be magnetized immediately.

4.3) Smontaggio/montaggio alternatore

IS 4000

Operazioni preliminari

- Scollegare i cavi che vanno alla morsettiera (Fig. 27 Rif. 1)
- Togliere i dadi ed il coperchio lato cuscinetto (Fig. 27 Rif. 2)
- Scollegare il connettore dal regolatore del carica batteria (Fig. 27 Rif. 3)
- Scollegare i FAST-ON dal portafusibile carica batteria (Fig. 27 Rif. 4)

4.3) Alternator dismounting/mounting

IS 4000

Preliminary operations:

- Disconnect the wires from terminal board (Fig. 27 Ref. 1)
- Remove the nuts and the cover (Fig. 27 Ref.

2) on the bearing side

- Disconnect the cable from the battery charger regulator (Fig. 27 Ref. 3)
- Disconnect the FAST-ON terminal from the battery charger fuse carrier (Fig. 27 Ref. 4)

Sostituzione dello statore

Mettere la punta del cacciavite in una delle tacche che sono sul coperchio e fare leva (Fig. 28)

Removal of the stator

Put the blade of a screwdriver in one of the cover notches and use it as a lever (Fig. 28).

Sostituzione del rotore

Operazioni preliminari

- Scollegare dallo scambiatore i tubi acqua (Fig. 29 Rif. 1)
- Scollegare dallo scambiatore il tubo aspirazione filtro aria (Fig. 29 Rif. 2)
- Rimuovere le viti (Fig. 29 Rif. 3) quindi asportare il gruppo scambiatore (Fig. 29 Rif. 4).

Removal of the rotor

Preliminary operations:

- Disconnect from the heat exchanger the water hoses (Fig. 29 Ref. 1).
- Disconnect from the heat exchanger the air filter inlet pipe (Fig. 29 Ref. 2).
- Remove the screws (Fig. 29 Ref. 3) and the heat exchanger (Fig. 29 Ref. 4).

Girare il rotore fino a che il motore risulti in compressione, quindi utilizzando l'apposita chiave, togliere il dado (Fig. 30 Rif. 1) che blocca il rotore attraverso il tirante centrale, dare un colpo sull'estremità di questa chiave (per sbloccare l'accoppiamento conico) e rimuovere il rotore (Fig. 30)

Turn the rotor till the engine reaches compression. Hold the rotor with the proper instrument and remove the nut that locks the rotor throught the central tie rod (Fig. 30 Ref. 1). Hit the end of the instrument that holds the rotor (to loosen the conical coupling) and remove the rotor (Fig. 30).

IS 8000

Operazioni preliminari

- Scollegare dallo scambiatore i tubi acqua (Fig. 31 Rif. 1)
- Scollegare il tubo aspirazione filtro aria dallo scambiatore (Fig. 32 Rif. 3)
- Togliere le viti di fissaggio (Fig. 31 Rif. 3) rimuovere lo scambiatore (Fig. 31 Rif. 2)
- Scollegare dalle morsettiere i cavi dell'alternatore (Fig. 32 Rif. 1)
- Scollegare il connettore dal regolatore del carica batteria (Fig. 32 Rif. 2)

IS 8000

Preliminary operations

- Disconnect the water hoses from the heat exchanger (Fig. 31 Ref. 1)
- Disconnect the air filter inlet pipe from the heat exchanger (Fig. 32 Ref. 3)
- Remove the screws (Fig. 31 Ref. 3) and the heat exchanger (Fig. 31 Ref. 2)
- Disconnect the cables from the terminal board (Fig. 32 Ref. 1)
- Disconnect the cable from the battery charger regulator (Fig. 32 Ref. 2)

Sostituzione dello statore

Eseguire le operazioni descritte in precedenza. -Svitare i dadi (Fig. 33 Rif. 1) e togliere il coperchio alternatore lato cuscinetto (Fig. 33 Rif. 2) - Estrarre lo statore (Fig. 33 Rif. 3)
N.B.: Lo statore viene fornito completo di camicia.

Removal of the stator

Carry out the operations described above. - Remove the nuts (Fig. 33 Ref. 1) and the cover (Fig. 33 Ref. 2) on the bearing side - Remove the stator (Fig. 33 Ref. 3)
N.B.: The stator is furnished together with its jacket.

Sostituzione del rotore

- Eseguire le operazioni descritte in precedenza

Removal of the rotor

- Carry out the operations previously described

- Togliere le viti (Fig. 34 Rif. 1) e rimuovere il coperchio alternatore lato motore (Fig. 34 Rif. 2) - Togliere le viti (Fig. 34 Rif. 3) e rimuovere il rotore (Fig. 34 Rif. 4).

MONTAGGIO

Eseguire le varie operazioni di rimontaggio nell'ordine inverso rispetto a quanto descritto in precedenza.

IMPORTANTE

Utilizzare una chiave dinamometrica rispettando le seguenti coppie di serraggio.

- Tiranti coperchi 1.5 kgm
- Tirante centrale 3.5 kgm
- Remove the screws (Fig. 34 Ref. 1) and the alternator (Fig. 34 Ref. 2) on the engine side. - Remove the screws (Fig. 34 Ref. 3) and the rotor (Fig. 34 Ref. 4).

MOUNTING
Remount the alternator following the operations described in the previous paragraph, inverting the order of their execution.

WARNING

Use a dynamometric spanner, taking into account the following tightening torque.

- Cover tie rods 1.5 Kgm .
- Central tie rod 3.5 Kgm .

4.4.1) Condensatore ($\mathrm{n}^{\circ} 2$)

Caratteristiche:

IS 4000	$20 \mu \mathrm{~F}$	450 V
IS 8000	$35 \mu \mathrm{~F}$	450 V

4.4.1) Capacitor (no. 2)

Characteristics:

IS 4000	$20 \mu \mathrm{~F}$	450 V
IS 8000	$35 \mu \mathrm{~F}$	450 V

36

Metodo di controllo:

- Scollegare i cavi (BLU) del condensatore.
- Posizionare il tester sul valore più alto della scala ohmica ($\times 1000$), la lancetta dovrà oscillare velocemente avantie indietro nel momento in cui i puntali del tester toccheranno i terminali del condensatore (Fig. 36).
N.B.: Con questa prova si verifica che il condensatore non sia in corto circuito o interrotto. Una diminuzione di capacità, che ha come effetto una diminuzione della tensione a vuoto, è difficilmente valutabile.
In questo caso, verificate le altre possibili cause, si consiglia di sostituire il condensatore.

RIMEDIO: Sostituire il condensatore.

Testing method:

- Disconnect the wires (color: BLUE) of the capacitor.
- With tester set to ($\times 1000$) connect it with the capacitor terminals. The needle must swing sharply away and back the moment the tester prods touch the capacitor terminals (Fig. 36).
N.B.: With this test, the capacitor is checked for short circuits/interruptions. If however the capacity is diminished resulting in avvoltage drop under no load condition, this test cannot diagnose the problem. In this case, we suggest that the capacitor be replaced after having checked for other possible faults.

REMEDY: Replace the capacitor.

4.4.2) Circuito stampato

Metodo di controllo:

- Verificare tutte le funzioni del generatore (avviamento, arresto, dispositivi di sicurezza).
- Verificare le possibili cuase di mancato funzionamento (batteria, motorino avviamento, pressostato, termostato, interruttore termico).

RIMEDIO: Sostituire il circuito stampato (Fig. 37)

4.4.2) Printed circuit

Testing method:

- Verify all the generator's functions (start, stop, safety devices).
- Verify all the possible causes of not proper running (battery, starter, oil pressure switch, water temperature switch, alternator thermostat).

REMEDY: Replace the printed circuit (Fig. 37).

4.4.3) Comando distanza

Metodo di controllo:

- Verificare tutte le funzioni del comando a distanza.
- Scollegare il connettore (Fig. 38 Rif. 1) e verificare le stesse funzioni dal cruscotto comandi.

RIMEDIO: Sostituire il comando a distanza.

4.4.3) Remote control panel

Testing method:

- Verify all the functions of the remote control panel
- Disconnect the connector (Fig. 38 Ref. 1) and verify the same functions with the panel control.

REMEDY: Replace the remote control panel.

4.5.1) Scambiatore di calore (acqua/aria)

4.5.1.1) Fascio tubiero

Caratteristiche:

Libero da incrostazioni

Metodo di controllo:

- Distaccare i tubi acqua (Fig. 39 Rif. 1)
- Togliere le viti (Fig. 39 Rif. 2) e rimuovere il bocchettone di raccordo del tubo aspirazione filtro aria (Fig. 39 Rif. 3)
- Togliere le viti (Fig. 39 Rif. 4) e rimuovere lo scambiatore (Fig. 39 Rif. 5)
- Verificare visivamente

IS 4000

Rimedio: Immergere il fascio tubiero in una so-
luzione di acqua (90%) e acido cloridico (10\%) alla temperatura di $50^{\circ} \mathrm{C}$.
Sostituire se necessario.

4.5.1.2) Anodi di Zinco

Caratteristiche:

- Consumo regolare

Metodo di controllo:

- Controllare visivamente
- Svitare e togliere i tappi completi (Fig. 40 Rif. 1)

4.5.1) Heat exchanger (water/air)

4.5.1.1) Tube nest

Characteristics:

Fouling free

Testing method:

- Disconnect the water hoses (Fig. 39 Ref. 1)
- Remove the screws (Fig. 39 Ref. 2) and the fitting (Fig. 39 Ref. 3) of the air filter inlet hose.
- Remove the screws (Fig. 39 Ref. 4) and the heat exchanger (Fig. 39 Ref. 5)
- Verify visually

IS 8000

Remedy:

Wash the tube nest immerging it in a water (90%) and hydrochloric acid (10\%) at $50^{\circ} \mathrm{C}$ temperature.
Replace it if necessary.

4.5.1.2) Zinc anodes

Characteristics:

- Regular consumption

Testing method

- Check visually
- Unscrew and remove the complete plugs (Fig. 40 Ref. 1)

Rimedio:
Sostituire i tappi completi.

Remedy:
Replace the complete plugs.
4.5.2) Elettrovalvola (No. 2 in parallelo IS 4000)

Caratteristiche: 12 V normalmente chiusa Bobina 18.3Ω

IS 4000

4.5.2) Stop solenoid (No. 2 in parallel IS 4000)

Characteristics: 12 V normally closed Coil 18.3Ω

IS 8000

Metodo di controllo:

- Scollegare il fast-on (Fig. 41/42 Rif. 1)
- Verificare che la resistenza dell'avvolgimento fra il fast on e massa abbia il valore indicato.

RIMEDIO: Sostituire l'elettrovalvola.

Testing method:

- Disconnect the fast-on terminal (Fig. 41/42

Ref. 1)

- Verify that the resistance value between the fast-on terminal and ground is as reported above.

REMEDY: Replace the solenoid.

4.5.3) Regolazione di giri

Poichè gli alternatori MASE sono del tipo a due poli vale la corrispondenza $1 \mathrm{~Hz} . \rightarrow 60 \mathrm{giri} / \mathrm{min}$. (3000 giri $/ \mathrm{min} . \rightarrow 50 \mathrm{~Hz} .3600 \mathrm{giri} / \mathrm{min} . \rightarrow 60 \mathrm{~Hz}$.).

Caratteristiche:

IS $4000 / 800050 \mathrm{~Hz}$

- A vuoto $52 / 52.5 \mathrm{~Hz}$
- A pieno carico $50 / 51 \mathrm{~Hz}$

IS $4500 / 800060 \mathrm{~Hz}$

- A vuoto $62 / 62.5 \mathrm{~Hz}$
- A pieno carico $60 / 61 \mathrm{~Hz}$

4.5.3) Engine speed adjustment

Since the alternator is a two pole type, 1 Hz corresponds to 60 R.P.M. (3000 R.P.M. $\rightarrow 50 \mathrm{~Hz}$. 3600 R.P.M. $\rightarrow 60 \mathrm{~Hz}$.).

Characteristics:

IS 4000/8000 50 HZ .

- At no load $52 / 52.5 \mathrm{~Hz}$.
- At full load $50 / 51 \mathrm{~Hz}$.

IS $4500 / 800060 \mathrm{~Hz}$.

- At no load $62 / 62.5 \mathrm{~Hz}$.
- At full load $60 / 61 \mathrm{~Hz}$.

IS 8000

Metodo di controllo:

- Verificare la frequenza all'uscita dei morsetti di potenza con uno strumento idoneo (Frequenzimetro a lamelle o digitale).

Per una lettura corretta dei valori di tensione e amperaggio utilizzare solo strumenti a vero valore efficace (R.M.S.).

RIMEDIO:

- Allentare la vite (Fig. 43 Rif. 1)
- Agire sulla vite di MAX sino al raggiungimento del n° di giri e quindi bloccare attraverso il controdado.
N.B.: Poichè la tensione generata dal gruppo è proporzionale alla frequenza, verificare il numero di giri del motore quale possibile causa di anomalie di tensione.

IMPORTANTE

Poichè la taratura del numero di giri del motore viene eseguita e quindi bloccata in sede di collaudo si sconsiglia in generale di intervenire sulla stessa.
Le indicazioni date qui sono riferite ad interventi di prima necessità a cui dovrà far seguito un controllo del motore. A titolo indicativo fra le possibili cause di basso rendimento del motore si consiglia di verificare l'eventualità di filtro aria o filtro nafta intasati, iniettore difettoso od otturato.

Testing method:

- Verify the frequency at the power terminals using a suitable instrument (vibrating-reed or digital frequency-meter).

To have correct readings of voltage and amperage values use instruments with true effective value (R.M.S.) only.

REMEDY:

— Loosen the screw (Fig. 43 Ref. 1)

- Adjust the MAX screw till the R.P.M. is as requested and lock the nut.
N.B. Since the voltage is proportional to the frequency, if there is a voltage fluctuaction check the R.P.M.

IMPORTANT

Since the engine R.P.M. is calibrated and blocked during testing, it is advisable in general to leave this alone. The given indications refer to emergency work and which should be followed by a check-up of the engine. For your information, in looking for causes leading to low efficiency of the engine, it is advisable to look at air filter/fuel filter chokings, defective/holed injector.

4.5.4) Termostato acqua

Caratteristiche:
Contatto normalmente aperto
Contatto chiuso $\mathrm{T}>85^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$

IS 4000

44

Metodo di controllo:

- Verificare che non ci sia continuità fra il positivo e massa (Fig. 44).
- Immergere il termostato in acqua a $85^{\circ} \mathrm{C} \mathrm{e}$ verificare che chiuda il contatto.

RIMEDIO: Sostituire il termostato.

4.5.5) Pressostato olio

Caratteristiche:

Contatto normalmente aperto
Contatto chiuso $\mathrm{P}<0.2 / 0,5 \mathrm{Atm}$.

IS 4000

4.5.4) Water temperature switch

Characteristics:

The contact is normally open
The contact is closed at $\mathrm{T}>85^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$

IS 8000

Testing method:

- Verify that there is no continuity between (+) and ground (Fig. 44).
- Put the thermostat in water at $85^{\circ} \mathrm{C}$ and check if the contact closes.

REMEDY: Replace the thermostat.

4.5.5) Oil pressure switch

Characteristics:

The contact is normally open
The contact is closed at $\mathrm{P}<0.2 / 0.5 \mathrm{Atm}$

IS 8000

Metodo di controllo:

- Verificare che a motore spento ci sia continuità fra il positivo e massa (Fig. 45).
- Verificare che accendendo il motore con l'olio a livello si interrompa la continuità fra il positivo e massa.

RIMEDIO: Sostituire il pressostato.

> IMPORTANTE
> Il pressostato olio non da un'indicazione esatta del livello dell'olio. E indispensabile quindi un controllo periodico (8 H) per evitare danni al motore.

Testing method:

- Chek if there is continuity between (+) and ground when the engine is not running (Fig. 45). - Check if there is no continuity between (+) and ground when the engine is running and the oil is at the right level.

REMEDY: Repiace the pressure switch.

WARNING

The pressure switch doesn't provide exact indication about the oil level.
A periodic check $(8 \mathrm{H})$ of the oil level is indispensable to prevent the engine from blowing up.

4.5.6) Starter

Characteristics: 12V.

Metodo di controllo:

- Scollegare i cavi
- Utilizzare una batteria 12 V collegando il (+) della batteria con il morsetto a vite ed il (-) a massa (carcassa del motorino) (Fig. 46).
- Verificare che il motorino giri facendo un ponte fra il morsetto a vite (+ motorino avviamento) ed il fast-on adiacente (Fig. 46 Rif. 1).

RIMEDIO: Sostituire il motorino d'avviamento.

Testing method:

- Disconnect the wires
- Connect a 12V battery (+) pole with the screw clamp and (-) pole to the body of the starter (Fig. 46).
- Connect the screw clamp and the adjacent fast-on and verify if the starter is running well (Fig. 46 Ref. 1).

REMEDY: Replace the starter.

5）TABELLA GUASTI

TROUBLE SHOOTING

	㟶				운 를 을 咅	RIMEDIO					$\begin{aligned} & \text { 㟶 } \\ & \text { N } \\ & \text { 㟶 } \end{aligned}$		SOLUTION
Pulsanti avviamento difettosi	\bigcirc					Vedi par． 4.4	Defective starting buttons	\bigcirc					See par． 4.4
Elettrovalvola difettosa	－	\bigcirc				Vedi par．4．5．2	Defective fuel solenoid	\bigcirc	－				See par．4．5．2
Batteria difettosa／ Sezione cavi insufficiente	\bigcirc					Vedi par．7．5．1	Defective battery／ Battery cable section	\bullet					See par．7．5．1
Motorino d＇avviamento difettoso	－					Vedi par．4．5．6	Defective starting motor	－					See par．4．5．6
Circuito／filtro combustibile	－	－				Vedi par．7．4．2	Piping fuel filter choked	－	\bigcirc				See par．7．4．2
Fusibile circuito 12 V	－					Vedi par．4．1．5．1	12 V circuit fuse	－					See par．4．1．5．1
Rellay avv．／Ev．	－					Vedi par．4．1．5．2	Avv．／Ev．relay	\bigcirc					See par．4．1．5．2
Eccessiva quantità olio carter			－	－		Vedi par． 1.1	Too much oil in crankcase			－	－		See par． 1.1
Intervento protezioni	－	－				Vedi par．4．5．4／4．5．5	Safety device intervention	\bigcirc	－				See par．4．5．4／4．5．5
Sovraccarico					－	Vedi par． 1.1	Overload	－	－			－	See par． 1.1
Leveraggi regolatore			－			Vedi manuale motore	Defective governor linkage			－			See engine manual
Guida valvole usurate				－		Vedi manuale motore	Worn valve guides				\bigcirc		See engine manual
Valvole bloccate	－					Vedi manuale motore	Blocked valves	－					See engine manual
Cilindro e segmenti usurati				－		Vedi manuale motore	Worn cylinder and piston rings				－		See engine manual
Iniettore difetoso	－				－	Vedi manuale motore	Defective injector					－	See engine manual
Pompa iniezione	－	－	－		－	Vedi manuale motore	Defective injector pump	－	－	－		－	See engine manual
Pompa alimentazione	－	－				Vedi manuale motore	Defective feeding pump	\bigcirc	－				See engine manual

5）TABELLA GUASTI

TROUBLE SHOOTING

				RIMEDIO					SOLUTION
Connessioni interrotte	－		－	Vedi par． 6	Defective connections	－		－	See par． 6
Condensatore di eccitazione	－	\bigcirc	－	Vedi par．4．4．1	Defective capacitor	－	\bigcirc	－	See par．4．4．1
Diodo di rotore difettoso	－	－	－	Vedi par．4．2．1	Defective diode	－	－	－	See par．4．2．1
Varistore difettoso	－	－	－	Vedi par．4．2．1	Defective varistor	－	\bigcirc	－	See par．4．2．1
Avvolgimento di rotore danneggiato	\bigcirc	－	－	Vedi par．4．2．2	Defective rotor winding	－	－	－	See par．4．2．2
Avvolgimento di eccitazione danneggiato	－	－	－	Vedi par．4．1．1	Defective excitation winding	\bigcirc	－	－	See par．4．1．1
Avvolgimento di potenza danneggiato	－	－		Vedi par．4．1．2	Defective power winding	－	\bigcirc		See par．4．1．2
Avvolgimento di carica batteria danneggiato			－	Vedi par．4．1．3	Defective battery charger winding			－	See par．4．1．3
Basso n° di giri del motore		－		Vedi par．4．5．3	Low number of revolutions		\bigcirc		See par．4．5．3
Intervento fusibile			－	Vedi par．4．1．3．1	Fuse intervention			－	See par．4．1．3．1
Regolatore di carica			－	Vedi par．4．1．3	Battery charger governor			－	See par．4．1．3

RIF.	DESCRIZIONE	DESCRIPTION
1	Rotore	Rotor
2	Statore	Stator
3	Diodo 25 A 800V	Diode 25 A 800V
4	Varistore	Varistor
5	Morsettiera condensatori/contaore	Capacitors/hourmeter terminal board
6	Morsettiera di potenza	Power terminal boar
7	Morsettiera circuito relay	Relay circuit terminal board
8	Fusibile 30 A	Fuse 30 A
9	Regolatore carica batteria	Battery charger regulator
10	Scheda relay	Printed circuit
11	Candeletta	Glow plug
12	Motorino avviamento	Starter motor
13	Elettrovalvola stop	Fuel solenoid
14	Termostato alternatore	Alternator thermostat
15	Termostato acqua	Water thermostat
16	Pressostato olio	Oil pressure switch
17	Batteria	Battery

RIF.	DESCRIZIONE	DESCRIPTION
1	Morsettiera di potenza	Power terminal board
2	Morsettiera condensatori/contaore	Capacitors/hourmeter terminal board
3	Morsettiera circuito relay	Relay circuit terminal board
4	Calza di massa	Earth braid
5	Condensatore $2 \times 20 \mu \mathrm{~F}$ (IS 4000)	Capacitor $2 \times 20 \mu \mathrm{~F}(4000)$
5	Condensatore $2 \times 35 \mu \mathrm{~F}$ (IS 8000)	Capacitor $2 \times 35 \mu \mathrm{~F}(8000)$
6	Contatore	Hourmeter
7	Morsetto 110 V	Terminal board 110 V
8	Connettore scheda relay	Relay circuit connector
9	Connettore pannello a distanza	Remote control panel connector

CAVO/CABLE			
MORSETTERIA TERMINAL BOARD	COLORE	COLOUR	
	1	ROSSO	RED
	2	GRIGIO	GREY
$8 \times 0,35 \mathrm{~mm}^{2}$	3	BLU	BLUE
	4	BIANCO	WHITE
	5	VERDE	GREEN
	6	NERO	BLACK
	7	GIALLO	YELLOW
	8	ARANCIO	ORANGE
		CALZA	EARTH
		METALLICA	BRAID

CAVO/CABLE			
MORSETTERIA TERMINAL BOARD	COLORE	COLOUR	
$2 \times 2,5 \mathrm{~mm}^{2}$	19	BLU	BLUE
	20	MARRONE	BROWN
$2 \times 0,5 \mathrm{~mm}^{2}$	21	NERO	BLACK
	22	ROSSO	RED

7) INSTALLAZIONE

7.1) Caratteristiche del vano

Il generatore deve essere installato in un locale sufficientemente aerato, in grado di assicurare la quantità d'aria necessaria alla combustione del motore (IS $400030 \div 35 \mathrm{M} 3 / \mathrm{H}$, IS $800055 \div 65$ $\mathrm{M} 3 / \mathrm{H}$).
Il locale deve essere separato ed isolato acusticamente dalle aree abitabili.
Il generatore va posizionato in modo da facilitare le normali operazioni di manutenzione. E consigliabile l'installazione nel locale dei motori di propulsione a patto che questo sia conforme alle condizioni sopracitate.

7.2) Ancoraggio del gruppo

Per il fissaggio del gruppo, predisporre un basamento dimensionato per sopportare peso e vibrazioni.
Procedere alla foratura del basamento seguendo le indicazioni di Fig. 47 per le posizioni dei fori di fissaggio.

7.3) Ventilazione

Il generatore è dotato di un sistema interno di raffreddamento forzato attraverso uno scambiatore acqua/aria. La quantità di aria necessaria alla combustione viene aspirata tramite l'apertura posta sul basamento (Fig. 48): assicurarsi quindi che questa apertura sia sempre ben libera.

7) INSTALLATION

7.1) Compartment features

The generator must be placed in a well ventilated place so as to allow the availability of the needed air for engine combustion (IS $400030 \div 35$ $\mathrm{M} 3 / \mathrm{H}$, IS $800055 \div 65 \mathrm{M} 3 / \mathrm{H}$).
The area must be separated and acoustically insulated from the living quarters.
The generator must be set as to make all the maintenance operations easy.
It is advisable to install it in the main engine room if this is in compliance with the above mentioned conditions.

7.2) Securing the unit

To secure the unit provide a properly dimensioned base to with-stand the unit weight and vibration.
Drill the base according the indications of Fig. 47.

7.3) Ventilation

The generator is equipped with an internal forced air cooling system through a water/air exchanger. The air necessary for combustion enters the unit through the opening on the base (Fig. 48) for this reason make sure the opening always remains unclogged.

7.4) Collegamenti acqua e combustibile

7.4.1) Circuito di raffreddamento del motore e sistema di scarico

Il motore viene raffreddato da un sistema a circuito aperto (IS 4000) nel quale circola acqua di mare e a circuito chiuso con scambiatore di calore (IS 8000).
La portata del circuito acqua mare è rispettivamente di $750 \mathrm{Lit} / \mathrm{H}$ per l'IS 4000 e di $1400 \mathrm{Lit} / \mathrm{H}$ per I'IS 8000.
All'atto dell'installazione è necessario predisporre un circuito di adduzione dell'acqua di mare per il raffreddamento e un sistema di scarico per la miscela di gas di combustione ed acqua.
In Fig. 49 è riportato uno schema completo di instailazione per il circuito di raffreddamento e sistema di scarico, nel quale, per evitare un funzionamento insoddisfacente, devono necessariamente essere compresi i seguenti componenti:

1) Presa a mare con rubinetto e rubinetto di spurgo (1a).
2) Filtro acqua.

Deve proteggere efficacemente il circuito di raffreddamento da incrostazioni di fango, sabbia e alghe.

7.4) Sea water and fuel connections

7.4.1) Engine cooling circuit and exhaust system

The engine of «IS 4000 " is raw water cooled, the engine of "IS 8000 " is fresh water cooled with heat exchanger.
The rate of sea water flow in the cooling circuit is $750 \mathrm{~L} / \mathrm{H}$ for «IS 4000» and $1400 \mathrm{~L} / \mathrm{H}$ for «IS 8000".
While installing it is necessary to set up an intake sea water circuit for cooling and an exhaust for water and engine gases mixed with it.
Fig. 49 shows a complete installation diagram (with the sea water circuit and exhaust system), where there must be the following components to avoid malfunctioning:

1) Sea connection with cock, and drain cock (1a).
2) Water filter.

It must protect cooling circuit from mud, seaweeds and sand fouling.

IMPORTANTE

Nel caso il gruppo venga installato ad un altezza superiore ad 1 Mt . sopra la linea di galleggiamento, è necessario montare una valvola di non ritorno dopo la presa a mare (Fig. 49 Rif. 7) che impedisce lo svuotamento del circuito acqua a motore spento.
In caso contrario si può danneggiare la girante della pompa acqua; per lo stesso motivo all'atto del primo avviamento del gruppo, è necessario provvedere al riempimento manuale della linea di aspirazione dalla valvola alla pompa.
3) Siphon-break: è una valvola che riporta a pressione atmosferica il circuito di raffreddamento a motore spento, evitando il fenomeno di sifonaggio. Va obbligatoriamente usato quando il generatore è installato sotto la linea di galleggiamento, e va posizionato ad almeno 50 cm . sopra il livello del mare.
N.B.: La cassa è già predisposta con $\mathrm{n}^{\circ} 2$ fori per l'allacciamento dello siphon-break (fig. 49). 4) Marmitta (3.5.L): essa attenua la rumorosità dello scarico ed impedisce il riflusso dell'acqua verso il motore. Per ridurre la rumorosità dello scarico si consiglia di installare la marmitta a non più di 1 mt . dal generatore. Si consiglia inoltre di installarla ad una altezza uguale o inferiore a quiella del basamento del generatore.
5) Silenziatore. Per ridurre ulteriormente rumorosità, si consiglia di installare questo silenziatore ad una distanza non superiore ad 1 mt . dal bocchettone di scarico a mare.

IMPORTANTE

La distanza dal punto più alto del condotto di scarico alla marmitta non deve superare mt. 3.
6) Bocchettone di scarico a mare:

Si sconsiglia di collegare lo scarico del generatore a quello dei motori principali.
Per l'allacciamento dei particolari 1-2-3 usare un tubo flessibile $\varnothing 15 \mathrm{~mm}$. (int.).
Per l'allacciamento dei particolari 4-5-6 usare un tubo flessibile $\varnothing 45 \mathrm{~mm}$. (int.).

IMPORTANT

Installing the generator more than 1 meter above the water line, it's necessary to fit a nonreturn valve (assembled on the sea connection with cock (Fig. 49 Ref. 7) that prevents the cooling water from returning to the sea is to be used; if not, damage may occur to the sea-water pump.
Starting the generator for the first time, it is necessary to manually fill the cooling circuit from the nonreturn valve up to the pump.
3) Siphon-break.

It is a valve which resets the cooling circuit to the atmospheric pressure when the engine is off thus avoiding siphoning.
Must be installed compulsorily (at least 50 cm . over sea level) when the generator is set under waterline.
N.B.: The soundproof box is equipped with n° 2 holes for the connection of the siphon-break (fig. 49).
4) Muffler ($3,5 \mathrm{~L}$.): The muffler decreases the exhaust noise and prevents water flow to the engine.
To reduce the noise at the exhaust, it is advisable to place the muffler at a distance not exceeding 1 meter from the generator. Furthermore it is advisable to install the muffler at a height equal or lower than the generator basement.
5) Silencer. To reduce the noise it is advisable to install this silencer at less than 1 mt . from the exhaust pipe union to the sea.

IMPORTANT

The distance between the hightest point of the exhaust pipe and the muffler must be less than 3 mt .
6) Exhaust pipe union to the sea.

Do not connect the generator exhaust system to the one of the main engines. For the input connections (parts no. 1-2-3) use hoses having mm .15 int. diameter; for the output connections (parts no. 4-5-6) use hoses having mm. 45 int. diameter.

7.4.2) Combustibile

L'alimentazione del gruppo è a gasolio, ed avviene tramite i raccordi contrassegnati dalle diciture "GASOLIO" e «RITORNO GASOLIO" (Fig. 50 Rif. $1 / 2$); quest'ultimo serve per il ritorno del combustibile in eccesso. Nel coliegamento al serbatoio combustibile non sono necessari elementi filtranti, in quanto è già presente sul gruppo un filtro combustibile; è invece buona norma inserire un rubinetto sulla linea di alimentazione a valle del serbatoio.
I tubi del combustibile devono essere in gomma resistente agli idrocarburi, di diametro interno 6 mm.

IMPORTANTE

ll gruppo è munito di spurgo nafta automatico. Qualora fosse necessario lo spurgo manuale premere il pulsante «ON" sul pannello comandi ed attendere lo spegnimento della spia "glow plug" prima di procedere.

7.4.2) Fuel

The generator is diesel fed through the fittings marked: «DIESEL" - «DIESEL RETURN» (Fig. 50 Ref. 1/2). The first is for fuel delivery and the second one is for the exceeding fuel return.
Fuel lines do not need filters as the unit is already equipped with fuel filter; it may be useful to install a cock between the fuel tank and the tube. Fuel lines must be made of hydrocarbon-resisting rubber, having 6 mms . internal dia.

IMPORTANT

The unit is equipped with an automatic self bleeding system. If it is necessary to bleed manually the fuel circuit you must push the button "ON" and wait that the "glow plug" LED switches off before bleeding.

7.5) Collegamenti elettrici

7.5.1) Allacciamento batteria

Per l'avviamento del gruppo è necessario utilizzare una batteria indipendente a 12 V , di capacità 45 Ah per I'IS 4000 e 55 Ah per I'IS 8000 . Essa va allacciata ai morsetti del generatore (Fig. 51 Rif.1) con cavi di sez. $25 \mathrm{~mm}^{2}$ fino a distanze di 5 mt . con cavi di sez. 35 mm 2 per distanze maggiori), rispettando questa sequenza di operazioni:

- Collegare prima il polo positivo (+) delia batteria al terminale contrassegnato dal simbolo (+) sul generatore.
- Collegare successivamente il polo negativo $(-)$ della batteria al terminale contrassegnato dal simbolo (-) sul generatore.
- Cospargere le connessioni con specifico grasso minerale, al fine di ridurre ossidazionio corrosioni.
Il generatore è dotato di un dispositivo elettronico per la ricarica automatica della batteria di avviamento, capace di erogare 15 A , ad una tensione di 12 V , a pieno carico.

7.5) Electric connections

7.5.1) Battery connection

To start the generator a 12 V .45 Ah . (IS 4000) and 12 V 55 Ah . (IS 8000) independent battery is recommended.
The battery has to be connected to the generator terminals (Fig. 51 Ref. 1) by means of 25 sq. mm .sect. wires up to 5 mt . of distance, and $35 \mathrm{sq} . \mathrm{mm}$. for higher distances, respecting the following sequence of operations:

- First connect the battery positive pole (+) to the positive $(+)$ terminal of the generator.
- Secondly connect the negative pole (-) to the negative terminal $(-)$ of the generator.
- Then coat the battery connections with proper mineral grease so as to reduce oxidation and corrosion.
The generator is provided with an electronic battery charging system, having a full load output of 15 A at 12 V .

IMPORTANTE

Installare la batteria in un vano aerato, separato dal generatore e da ogni dispositivo che possa provocare calore o scintille.
Verificare periodicamente lo stato delle connessioni dei morsetti ed il livello acqua batteria.
Nel caso si renda necessario scollegare i cavi, agire inversamente all'ordine raccomandato nel collegarli.
Non invertire le polarità nei cavi di connessione; il generatore e la batteria potrebbero esserne seriamente danneggiati.
Non collegare altri carichi alla batteria.

7.5.2) Allacciamento cruscotto comandi

Questo collegamento è eseguibile tramite le morsettiere (Fig. 52 Rif. 1/2) utilizzando i cavi in dotazione già collegati al cruscotto comandi; i morsetti da usare sono rispettivamente quelli contrassegnati dal $n^{\circ} 1$ al $n^{\circ} 8$ per i cavi comando, la calza di massa và collegata al morsetto faston (Fig. 52 Rif. 3). Isolare accuratamente e utilizzare un faston femmina preisolato. È necessario rispettare le numerazioni ed i colori come da tabella cavo A cap. 10. Bloccare inoltre il cavo A agli altri cavi con le fascette in dotazione. I cavi di eccitazione (sez. $2,5 \mathrm{~mm}^{2}$) vanno collegati ai morsetti $n^{\circ} 19$ e 20 della morsettiera di potenza (Fig. 52 Rif. 2).
I cavi di segnale (sez. $0,5 \mathrm{~mm}^{2}$) vanno collegati ai morsetti $n^{\circ} 21$ e 22 della stessa morsettiera. Sul cruscotto comandi sono presenti 6 LED di funzionamento ed allarme (Fig. 53 Rif. 1), un contaore (Fig. 53 Rif. 2) ed i pulsanti di avviamento ed arresto (Fig. 53 Rif. 3/4/5), le cui funzioni saranno descritte in seguito.
Per fissare il cruscotto comandi occorre utilizzare gli appositi sostegni (Fig. 53 Rif. 6).

IMPORTANT

Install the battery in a well aerated place, separated from the generator and from any heat/spark producing device.
At regular intervals, check the electrolyte level and the conditions of terminal connections.
Should it be necessary to disconnect the wires, reverse the order of the connecting instructions. Do not reverse the polarity of the connecting wires: battery and generator could be seriously damaged.
Do not connect other loads to the battery.

7.5.2) Panel control connection

Provide the connection to the terminal board (Fig. 52 Ref. $1 / 2$) using the cables just connected to the control panel; the terminals to be used are numbered from no. 1 to no. 8 , the earth braid must be connected to the fast-on terminal (Fig. 52 Ref. 3). Isolate this connection carefully. It is necessary to respect the numerical order and the related cables colours, see cap. 10 table cable A. Furthermore fasten cable A to the other cables by the existing clamps.
The excitation cables (sect: $2,5 \mathrm{~mm}^{2}$) must be connected terminals no. 19 and no. 20 of the power terminal board (Fig. 52 Ref. 2).
The signal cables (sect: $0,5 \mathrm{~mm}^{2}$) must be connected to terminals no. 21 and no. 22 of same power terminal board.
On the panel control there are no. 6 pilot and warning lamps (Fig. 53 Ref. 1) an hour meter (Fig. 53 Ref. 2) and the start and stop buttons (Fig. 53 Ref. 3/4/5) whose functions will be described later on. To secure the panel control use the related supports. (Fig. 53 Ref. 6).

IMPORTANTE

I/ cruscotto comandi và necessariamente installato, in quanto esso è indispensabile per il funzionamento del gruppo: non utilizzare dispositivi diversi dal comando fornito col gruppo, poichè essi potrebbero non essere compatibili con il generatore stesso.
Eseguire l'allacciamento a batteria scollegata.

7.5.3) Allacciamento cruscotto comandi a di-

 stanza (optional)Questo collegamento và eseguito utilizzando il cavo schermato, già collegato al cruscotto, inserendo il connettore (Fig. 54 Rif. 1), nell'apposita presa (Fig. 54 Rif. 2) del cruscotto comandi. Sul comando a distanza sono presenti 4 spie di funzionamento ed allarme (Fig. 54 Rif. 3), ed i pulsanti di avviamento ed arresto (Fig. 54 Rif. 4/5/6), le cui funzioni saranno descritte in seguito. Per fissare il comando a distanza occorre praticare nel luogo desiderato un'apertura con le dimensioni riportate in Fig. 55.

IMPORTANTE

L'allacciamento del cruscotto comandi a distanza esclude automaticamente i comandi avviamento e arresto dal cruscotto comandi principale.

IMPORTANT

It is essential to install the control panel because the generator does not work properly without it. The use of a control device different from that of MASE could damage the generator.
Provide all connections with the battery disconnected.

7.5.3) Remote control connection (optional)

Provide the connection using the shielded cable, just connected to the remote panel and pluging in its socket (Fig. 54 Ref. 1) (Fig. 54 Ref. 2) on the control panel.
On the remote control panel there are no. 4 pilot and warning lamps (Fig. 54 Ref. 3) and the start and stop buttons (Fig. 54 Ref. 4/5/6) whose functions will be described later on. To secure the remote control panel cut an opening having the dimensions shown in Fig. 55.

IMPORTANT

When the remote control panel is connected, automatically the start and stop functions on the main control panel are cutted out.

setuerd ui puienza (rig. so mit. I) ail interno del cruscotto.
Questa gamma prevede versioni a doppio voltaggio 110/220 V (oppure 120/240 V); sono perciò possibili due tipi di collegamento (e quindi di utilizzo) secondo le seguenti configurazioni:
a) Collegamento in parallelo: in questa configurazione si ha una unica uscita a 110 (120) V fra i punti P_{1} e F_{2}, collegando le uscite dell'alternatore ($P_{1}, F_{1}, P_{2}, F_{2}$) secondo lo schema di Fig. 56/a.
b) Collegamento in serie: in questa configurazione è possibile prelevare potenza sia a tensione 220 (240) V fra i punti P_{1} ed F_{2}, che a tensione 110 (120) V fra i punti P_{1} e P_{2} (o fra i punti F_{1} ed F_{2}) secondo lo schema di Fig. 56/b.

IMPORTANTE

Nella configurazione di Fig. 56/b la potenza prelevabile da ognuna delle due possibili uscite (P_{1} e P_{2}, oppure F_{1} ed F_{2}) è la metà della potenza continuativa di targa.
Inoltre le due uscite possono essere usate contemporaneamente solo per alimentare circuiti utilizzatori separati fra loro, e le potenze così ottenibili non possono essere sommate fra loro (vedi Fig. 57).

- Assicurarsi che la somma dei carichi da alimentare non superi la potenza nominale del generatore (vedi cap. 2, caratteristiche).
- Si raccomanda di interporre fra generatore e utenze elettriche protezioni magnetotermiche o similari, dimensionate alla potenza erogabile del generatore.
- È necessario interporre sulla linea di utilizzo un commutatore che permetta di commutare le utenze dal generatore ad una linea di alimentazione esterna. Il commutatore va dimensionato in base all'entità dei carichi in gioco; uno schema di massima è rappresentato in Fig. 58.

(Pmax $=\frac{1}{2}$ Pcont.)

Alternate current generated by the unit can be used by means of the terminal board (Fig. 56 Ref. 1), which is inside the electric panel.

IS serie is available in a dual voltage $110 / 220 \mathrm{~V}$ (or 120/240V) version; two different A.C. connections are possible:
a) parallel connection: connecting the terminals $P_{1}, F_{1}, P_{2}, F_{2}$ as Fig. 56/a shows, it is available a 110 V or 120 V output according to the version between terminals P_{1} and F_{2}.
b) series connection: connecting as Fig. 56/b shows, it is available from terminals P_{1} and F_{2} a 220 V or 240 V output; and from terminals P_{1} and P_{2} (or F_{1} and F_{2}) a 110 V or 120 V output (according to the version).

IMPORTANT

According to the diagram of Fig. 56/b, the available power at each of the output lines P_{1} and P_{2} F_{1} and F_{2} is half of the rated one.
The two output lines can only be used to feed separated electric loads and the obtained outputs can not be summed up. (See fig. 57).

- Make sure the sum of loads to be fed doesn't exceed the generator's rated output (see item 2, technical features).
- It's recommended to insert, between the generator and the electric loads, some safety device, magneto-thermic or alike, proportioned to the generatori's rated output.
- It is essential to insert a commutator proportioned to the loads in the line leading to the loads, in order to be able to disconnect the generator, in cases where the electrical system is connected to an external power supply. Fig. 58 shows a basic diagram.

[^0]: * PRIMA SOSTITUZIONE - FIRST REPLACEMENT

[^1]: IMPORTANTE
 La mancanza di tensione in uscita può essere causata eccezionalmente dalla mancanza o insufficienza di magnetismo residuo del rotore. Come primo intervento si consiglia, con il generatore in moto di collegare per un attimo una batteria 12 V ai terminali del condensatore 0, all'uscita di potenza.
 In questo modo il rotore viene instantaneamente magnetizzato.

